1 Star 0 Fork 109

xindeluoye/abu

forked from 笨人贱/abu 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
c4.py 14.82 KB
一键复制 编辑 原始数据 按行查看 历史
# -*- encoding:utf-8 -*-
from __future__ import print_function
from __future__ import division
import warnings
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
# noinspection PyUnresolvedReferences
import abu_local_env
import abupy
from abupy import ABuSymbolPd
from abupy import xrange, pd_resample
warnings.filterwarnings('ignore')
sns.set_context(rc={'figure.figsize': (14, 7)})
# 使用沙盒数据,目的是和书中一样的数据环境
abupy.env.enable_example_env_ipython()
stock_day_change = np.load('../gen/stock_day_change.npy')
"""
第四章 量化工具——pandas
abu量化系统github地址:https://github.com/bbfamily/abu (您的star是我的动力!)
abu量化文档教程ipython notebook:https://github.com/bbfamily/abu/tree/master/abupy_lecture
"""
def sample_411():
"""
4.1.1 DataFrame构建及方法
:return:
"""
print('stock_day_change.shape:', stock_day_change.shape)
# 下面三种写法输出完全相同,输出如表4-1所示
print('head():\n', pd.DataFrame(stock_day_change).head())
print('head(5):\n', pd.DataFrame(stock_day_change).head(5))
print('[:5]:\n', pd.DataFrame(stock_day_change)[:5])
def sample_412():
"""
4.1.2 索引行列序列
:return:
"""
# 股票0 -> 股票stock_day_change.shape[0]
stock_symbols = ['股票 ' + str(x) for x in
xrange(stock_day_change.shape[0])]
# 通过构造直接设置index参数,head(2)就显示两行,表4-2所示
print('pd.DataFrame(stock_day_change, index=stock_symbols).head(2):\n',
pd.DataFrame(stock_day_change, index=stock_symbols).head(2))
# 从2017-1-1向上时间递进,单位freq='1d'即1天
days = pd.date_range('2017-1-1',
periods=stock_day_change.shape[1], freq='1d')
# 股票0 -> 股票stock_day_change.shape[0]
stock_symbols = ['股票 ' + str(x) for x in
xrange(stock_day_change.shape[0])]
# 分别设置index和columns
df = pd.DataFrame(stock_day_change, index=stock_symbols, columns=days)
# 表4-3所示
print('df.head(2):\n', df.head(2))
def sample_413():
"""
4.1.3 金融时间序列
:return:
"""
days = pd.date_range('2017-1-1',
periods=stock_day_change.shape[1], freq='1d')
stock_symbols = ['股票 ' + str(x) for x in
xrange(stock_day_change.shape[0])]
df = pd.DataFrame(stock_day_change, index=stock_symbols, columns=days)
# df做个转置
df = df.T
# 表4-4所示
print('df.head():\n', df.head())
df_20 = pd_resample(df, '21D', how='mean')
# 表4-5所示
print('df_20.head():\n', df_20.head())
def sample_414():
"""
4.1.4 Series构建及方法
:return
"""
days = pd.date_range('2017-1-1',
periods=stock_day_change.shape[1], freq='1d')
stock_symbols = ['股票 ' + str(x) for x in
xrange(stock_day_change.shape[0])]
df = pd.DataFrame(stock_day_change, index=stock_symbols, columns=days)
df = df.T
print('df.head():\n', df.head())
df_stock0 = df['股票 0']
# 打印df_stock0类型
print('type(df_stock0):', type(df_stock0))
# 打印出Series的前5行数据, 与DataFrame一致
print('df_stock0.head():\n', df_stock0.head())
df_stock0.cumsum().plot()
plt.show()
def sample_415():
"""
4.1.5 重采样数据
:return
"""
days = pd.date_range('2017-1-1',
periods=stock_day_change.shape[1], freq='1d')
stock_symbols = ['股票 ' + str(x) for x in
xrange(stock_day_change.shape[0])]
df = pd.DataFrame(stock_day_change, index=stock_symbols, columns=days)
df = df.T
df_stock0 = df['股票 0']
# 以5天为周期重采样(周k)
df_stock0_5 = pd_resample(df_stock0.cumsum(), '5D', how='ohlc')
# 以21天为周期重采样(月k),
# noinspection PyUnusedLocal
df_stock0_20 = pd_resample(df_stock0.cumsum(), '21D', how='ohlc')
# 打印5天重采样,如下输出2017-01-01, 2017-01-06, 2017-01-11, 表4-6所示
print('df_stock0_5.head():\n', df_stock0_5.head())
from abupy import ABuMarketDrawing
# 图4-2所示
ABuMarketDrawing.plot_candle_stick(df_stock0_5.index,
df_stock0_5['open'].values,
df_stock0_5['high'].values,
df_stock0_5['low'].values,
df_stock0_5['close'].values,
np.random.random(len(df_stock0_5)),
None, 'stock', day_sum=False,
html_bk=False, save=False)
print('type(df_stock0_5.open.values):', type(df_stock0_5['open'].values))
print('df_stock0_5.open.index:\n', df_stock0_5['open'].index)
print('df_stock0_5.columns:\n', df_stock0_5.columns)
"""
4.2 基本数据分析示例
"""
# n_folds=2两年
tsla_df = ABuSymbolPd.make_kl_df('usTSLA', n_folds=2)
def sample_420():
# 表4-7所示
print('tsla_df.tail():\n', tsla_df.tail())
def sample_421():
"""
4.2.1 数据整体分析
:return:
"""
print('tsla_df.info():\n', tsla_df.info())
print('tsla_df.describe():\n', tsla_df.describe())
tsla_df[['close', 'volume']].plot(subplots=True, style=['r', 'g'], grid=True)
plt.show()
def sample_422():
"""
4.2.2 索引选取和切片选择
:return:
"""
# 2014-07-23至2014-07-31 开盘价格序列
print('tsla_df.loc[x:x, x]\n', tsla_df.loc['2014-07-23':'2014-07-31', 'open'])
# 2014-07-23至2014-07-31 所有序列,表4-9所示
print('tsla_df.loc[x:x]\n', tsla_df.loc['2014-07-23':'2014-07-31'])
# [1:5]:(1,2,3,4),[2:6]: (2, 3, 4, 5)
# 表4-10所示
print('tsla_df.iloc[1:5, 2:6]:\n', tsla_df.iloc[1:5, 2:6])
# 切取所有行[2:6]: (2, 3, 4, 5)列
print('tsla_df.iloc[:, 2:6]:\n', tsla_df.iloc[:, 2:6])
# 选取所有的列[35:37]:(35, 36)行,表4-11所示
print('tsla_df.iloc[35:37]:\n', tsla_df.iloc[35:37])
# 指定一个列
print('tsla_df.close[0:3]:\n', tsla_df.close[0:3])
# 通过组成一个列表选择多个列,表4-12所示
print('tsla_df[][0:3]:\n', tsla_df[['close', 'high', 'low']][0:3])
def sample_423():
"""
4.2.3 逻辑条件进行数据筛选
:return:
"""
# abs为取绝对值的意思,不是防抱死,表4-13所示
print('tsla_df[np.abs(tsla_df.p_change) > 8]:\n', tsla_df[np.abs(tsla_df.p_change) > 8])
print('tsla_df[(np.abs(tsla_df.p_change) > 8) & (tsla_df.volume > 2.5 * tsla_df.volume.mean())]:\n',
tsla_df[(np.abs(tsla_df.p_change) > 8) & (tsla_df.volume > 2.5 * tsla_df.volume.mean())])
def sample_424_1():
"""
4.2.4_1 数据转换与规整
:return:
"""
# 数据序列值排序
print('tsla_df.sort_index(by=p_change)[:5]:\n', tsla_df.sort_index(by='p_change')[:5])
print('tsla_df.sort_index(by=p_change, ascending=False)[:5]:\n',
tsla_df.sort_index(by='p_change', ascending=False)[:5])
# 如果一行的数据中存在na就删除这行
tsla_df.dropna()
# 通过how控制 如果一行的数据中全部都是na就删除这行
tsla_df.dropna(how='all')
# 使用指定值填充na, inplace代表就地操作,即不返回新的序列在原始序列上修改
tsla_df.fillna(tsla_df.mean(), inplace=True)
def sample_424_2():
"""
4.2.4_1 数据转换处理 pct_change
:return:
"""
print('tsla_df.close[:3]:\n', tsla_df.close[:3])
print('tsla_df.close.pct_change()[:3]:\n', tsla_df.close.pct_change()[:3])
print('(223.54 - 222.49) / 222.49, (223.57 - 223.54) / 223.54:', (223.54 - 222.49) / 222.49,
(223.57 - 223.54) / 223.54)
# pct_change对序列从第二项开始向前做减法在除以前一项,这样的针对close做pct_change后的结果就是涨跌幅
change_ratio = tsla_df.close.pct_change()
print('change_ratio.tail():\n', change_ratio.tail())
# 将change_ratio转变成与tsla_df.p_change字段一样的百分百,同样保留两位小数
print('np.round(change_ratio[-5:] * 100, 2):\n', np.round(change_ratio[-5:] * 100, 2))
fmt = lambda x: '%.2f' % x
print('tsla_df.atr21.map(fmt).tail():\n', tsla_df.atr21.map(fmt).tail())
def sample_425():
"""
4.2.5 数据本地序列化操作
:return:
"""
tsla_df.to_csv('../gen/tsla_df.csv', columns=tsla_df.columns, index=True)
tsla_df_load = pd.read_csv('../gen/tsla_df.csv', parse_dates=True, index_col=0)
print('tsla_df_load.head():\n', tsla_df_load.head())
"""
4.3 实例1:寻找股票异动涨跌幅阀值
"""
def sample_431():
"""
4.3.1 数据的离散化
:return:
"""
tsla_df.p_change.hist(bins=80)
plt.show()
cats = pd.qcut(np.abs(tsla_df.p_change), 10)
print('cats.value_counts():\n', cats.value_counts())
# 将涨跌幅数据手工分类,从负无穷到-7,-5,-3,0, 3, 5, 7,正无穷
bins = [-np.inf, -7.0, -5, -3, 0, 3, 5, 7, np.inf]
cats = pd.cut(tsla_df.p_change, bins)
print('bins cats.value_counts():\n', cats.value_counts())
# cr_dummies为列名称前缀
change_ration_dummies = pd.get_dummies(cats, prefix='cr_dummies')
print('change_ration_dummies.head():\n', change_ration_dummies.head())
def sample_432():
"""
4.3.2 concat, append, merge的使用
:return:
"""
# 将涨跌幅数据手工分类,从负无穷到-7,-5,-3,0, 3, 5, 7,正无穷
bins = [-np.inf, -7.0, -5, -3, 0, 3, 5, 7, np.inf]
cats = pd.cut(tsla_df.p_change, bins)
change_ration_dummies = pd.get_dummies(cats, prefix='cr_dummies')
# noinspection PyUnresolvedReferences
print('pd.concat([tsla_df, change_ration_dummies], axis=1).tail():\n ',
pd.concat([tsla_df, change_ration_dummies], axis=1).tail())
# pd.concat的连接axis=0:纵向连接atr>14的df和p_change > 10的df
pd.concat([tsla_df[tsla_df.p_change > 10],
tsla_df[tsla_df.atr14 > 16]], axis=0)
# 直接使用DataFrame对象append,结果与上面pd.concat的结果一致, 表4-20所示
print('tsla_df[tsla_df.p_change > 10].append(tsla_df[tsla_df.atr14 > 16]):\n',
tsla_df[tsla_df.p_change > 10].append(tsla_df[tsla_df.atr14 > 16]))
"""
4.4 实例2 :星期几是这个股票的‘好日子’
"""
def sample_441():
"""
4.4.1 构建交叉表
:return:
"""
# noinspection PyTypeChecker
tsla_df['positive'] = np.where(tsla_df.p_change > 0, 1, 0)
print('tsla_df.tail():\n', tsla_df.tail())
xt = pd.crosstab(tsla_df.date_week, tsla_df.positive)
print('xt:\n', xt)
xt_pct = xt.div(xt.sum(1).astype(float), axis=0)
print('xt_pct:\n', xt_pct)
xt_pct.plot(
figsize=(8, 5),
kind='bar',
stacked=True,
title='date_week -> positive')
plt.xlabel('date_week')
plt.ylabel('positive')
plt.show()
def sample_442():
"""
4.4.2 构建透视表
:return:
"""
# noinspection PyTypeChecker
tsla_df['positive'] = np.where(tsla_df.p_change > 0, 1, 0)
print('tsla_df.pivot_table([positive], index=[date_week]):\n',
tsla_df.pivot_table(['positive'], index=['date_week']))
print('tsla_df.groupby([date_week, positive])[positive].count():\n',
tsla_df.groupby(['date_week', 'positive'])['positive'].count())
"""
4.5 实例3 :跳空缺口
"""
jump_pd = pd.DataFrame()
jump_threshold = tsla_df.close.median() * 0.03
def judge_jump(p_today):
global jump_pd
if p_today.p_change > 0 and (p_today.low - p_today.pre_close) > jump_threshold:
"""
符合向上跳空
"""
# jump记录方向 1向上
p_today['jump'] = 1
# 向上跳能量=(今天最低 - 昨收)/ 跳空阀值
p_today['jump_power'] = (p_today.low - p_today.pre_close) / jump_threshold
jump_pd = jump_pd.append(p_today)
elif p_today.p_change < 0 and (p_today.pre_close - p_today.high) > jump_threshold:
"""
符合向下跳空
"""
# jump记录方向 -1向下
p_today['jump'] = -1
# 向下跳能量=(昨收 - 今天最高)/ 跳空阀值
p_today['jump_power'] = (p_today.pre_close - p_today.high) / jump_threshold
jump_pd = jump_pd.append(p_today)
def sample_45_1():
"""
4.5 实例3 :跳空缺口
:return:
"""
for kl_index in np.arange(0, tsla_df.shape[0]):
# 通过ix一个一个拿
today = tsla_df.ix[kl_index]
judge_jump(today)
# filter按照顺序只显示这些列, 表4-26所示
print('jump_pd.filter([jump, jump_power, close, date, p_change, pre_close]):\n',
jump_pd.filter(['jump', 'jump_power', 'close', 'date', 'p_change', 'pre_close']))
def sample_45_2():
"""
4.5 实例3 :跳空缺口
:return:
"""
# axis=1即行数据,tsla_df的每一条行数据即为每一个交易日数据
tsla_df.apply(judge_jump, axis=1)
print('jump_pd:\n', jump_pd)
from abupy import ABuMarketDrawing
# view_indexs传入jump_pd.index,即在k图上使用圆来标示跳空点
ABuMarketDrawing.plot_candle_form_klpd(tsla_df, view_indexs=jump_pd.index)
plt.show()
"""
4.6 pandas三维面板的使用
"""
def sample_46():
"""
4.6 pandas三维面板的使用
:return:
"""
# disable_example_env_ipython不再使用沙盒数据,因为沙盒里面没有相关tsla行业的数据啊
abupy.env.disable_example_env_ipython()
from abupy import ABuIndustries
r_symbol = 'usTSLA'
# 这里获取了和TSLA电动车处于同一行业的股票组成pandas三维面板Panel数据
p_date, _ = ABuIndustries.get_industries_panel_from_target(r_symbol, show=False)
print('type(p_date):', type(p_date))
print('p_date:\n', p_date)
print('p_date[usTTM].head():\n', p_date['usTTM'].head())
p_data_it = p_date.swapaxes('items', 'minor')
print('p_data_it:\n', p_data_it)
p_data_it_close = p_data_it['close'].dropna(axis=0)
print('p_data_it_close.tail():\n', p_data_it_close.tail())
from abupy import ABuScalerUtil
# ABuScalerUtil.scaler_std将所有close的切面数据做(group - group.mean()) / group.std()标示化,为了可视化在同一范围
p_data_it_close = ABuScalerUtil.scaler_std(p_data_it_close)
p_data_it_close.plot()
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.ylabel('Price')
plt.xlabel('Time')
plt.show()
if __name__ == "__main__":
sample_411()
# sample_412()
# sample_413()
# sample_414()
# sample_415()
# sample_420()
# sample_421()
# sample_422()
# sample_423()
# sample_424_1()
# sample_424_2()
# sample_425()
# sample_431()
# sample_432()
# sample_441()
# sample_442()
# sample_45_1()
# sample_45_2()
# sample_46()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/XGSEN/abu.git
git@gitee.com:XGSEN/abu.git
XGSEN
abu
abu
master

搜索帮助