代码拉取完成,页面将自动刷新
同步操作将从 李建成/RCode_基本有用的计量经济学 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#=========================================================================#
# Author Information : #
# Name: 李建成 Li Jian-cheng #
# Unit: Sun Yat-Sen University #
# Email: [email protected] #
# Address: No. 135, Xingang Xi Road, Guangzhou, 510275, P. R. China #
# STATEMENT: #
# This code is just preparing for study and communication. #
# It is not allowed for any commercial purposes. #
# There are any quesitons or problems, please cantact to author by e-mail. #
# The code is not perfect, it is welcome to argue. #
#=========================================================================#
setwd("E:\\EDUCATION\\STATA\\基本有用的计量经济学\\programs")
library(readstata13) # package for reading the data created by stata13~15
library(plyr) # package for data
#-----------------------------------------------#
#-------Chapter5: Linear Model Regression-------#
#-----------------------------------------------#
chip2002 <- read.dta13("ch5\\chip2002.dta")
summary(chip2002) # Statistical description; result1 in P73
chip2002$city <- as.factor(chip2002$city)
dummycity <- model.matrix(~city, data=chip2002) # creat the dummy variables of city
chip2002$industry <- as.factor(chip2002$industry)
dummyindustry <- model.matrix(~industry, data=chip2002) # creat the dummy variables of industry
chip2002 <- cbind(chip2002,dummycity,dummyindustry) # combine the chip2002 and the dummy variables
linear_fit1 <- lm(lwage~educ+exper+expersq,data=chip2002) # 方程1:lwage=c+educ+exper+expersq+u1
summary(linear_fit1) # result1 in P74
# Call:
# lm(formula = lwage ~ educ + exper + expersq, data = chip2002)
#
# Residuals:
# Min 1Q Median 3Q Max
# -7.2345 -0.3229 0.0649 0.4098 2.7205
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 7.544e+00 4.259e-02 177.12 < 2e-16 ***
# educ 8.734e-02 2.505e-03 34.86 < 2e-16 ***
# exper 3.728e-02 2.940e-03 12.68 < 2e-16 ***
# expersq -3.619e-04 7.267e-05 -4.98 6.46e-07 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 0.6926 on 9256 degrees of freedom
# Multiple R-squared: 0.1584, Adjusted R-squared: 0.1581
# F-statistic: 580.7 on 3 and 9256 DF, p-value: < 2.2e-16
#FWL定理--A simple proof
test_fit1 <- lm(lwage~exper+expersq,data=chip2002) # 方程2:lwage=c+exper+expersq+u2
chip2002$fity <- test_fit1$residuals
test_fit2 <- lm(educ~exper+expersq,data=chip2002) # 方程3:educ=c+exper+expersq+u3
chip2002$fitx <- test_fit2$residuals
test_fitFWL1 <- lm(fity~fitx,data=chip2002) # 方程FWL1:u2=c+u3+u'
summary(test_fitFWL1)
# Call:
# lm(formula = fity ~ fitx, data = chip2002)
#
# Residuals:
# Min 1Q Median 3Q Max
# -7.2345 -0.3229 0.0649 0.4098 2.7205
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -1.881e-16 7.196e-03 0.00 1
# fitx 8.734e-02 2.505e-03 34.87 <2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 0.6925 on 9258 degrees of freedom
# Multiple R-squared: 0.1161, Adjusted R-squared: 0.116
# F-statistic: 1216 on 1 and 9258 DF, p-value: < 2.2e-16
test_fitFWL2 <- lm(lwage~fitx,data=chip2002) # 方程FWL2:lwage=u3+u''
summary(test_fitFWL2)
# Call:
# lm(formula = lwage ~ 0 + fitx, data = chip2002)
#
# Residuals:
# Min 1Q Median 3Q Max
# 1.914 8.788 9.198 9.559 11.648
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# fitx 0.08734 0.03312 2.637 0.00838 **
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 9.156 on 9259 degrees of freedom
# Multiple R-squared: 0.0007504, Adjusted R-squared: 0.0006425
# F-statistic: 6.954 on 1 and 9259 DF, p-value: 0.008379
#plot x & y
plot(chip2002$educ,chip2002$lwage)
plot(chip2002$fitx,chip2002$fity)
city <- names(chip2002)[16:76]
industry <- names(chip2002)[78:88]
linear_fit2 <- lm(lwage~educ+exper+expersq,data=chip2002)
linear_fit3 <- lm(lwage~educ+exper+expersq+male+city,data=chip2002)
linear_fit4 <- lm(lwage~educ+exper+expersq+male+city+industry,data=chip2002) #result in P75
#--------------------------------------------------------------------------#
#-------Chapter6: Matching Method and Estimation of Treatment Effect-------#
#--------------------------------------------------------------------------#
library(Matching)
library(plm)
nsw_dw <- read.dta13("ch6\\nsw_dw.dta")
cps_controls <- read.dta13("ch6\\cps_controls.dta")
new_cps <- rbind(nsw_dw[nsw_dw$treat==1,],cps_controls)
##propensity score matching using nsw_dw
#ATT
logit_m1 <- glm(treat~age+education+black+hispanic+married+nodegree+re74+re75,data=nsw_dw,family = binomial(link = "logit"))
match_ATT1 <- Match(Y=nsw_dw$re78,Tr=nsw_dw$treat,X=logit_m1$fitted,estimand="ATT",M=1,replace=T)
match_ATT_adj1 <- Match(Y=nsw_dw$re78,Tr=nsw_dw$treat,Z=nsw_dw$re75,X=logit_m$fitted,estimand="ATT",M=1,BiasAdjust = T,replace=T)
summary(match_ATT1 )
summary(match_ATT_adj1 )
# kernel density graph
library(sm)
#before match
densitypscore1 <- data.frame(pscore=logit_m1$fitted,treat=nsw_dw$treat)
sm.density.compare(densitypscore1$pscore,group = densitypscore1$treat)
# after match
logitpscore1 <- c(match_ATT1$mdata$X[1,],match_ATT1$mdata$X[2,])
xx<- vector(length=688)
for(i in 1:344){
xx[i] <- 1
xx[i+344] <- 0
}
densitypscore2 <- data.frame(pscore=logitpscore1,treat=xx)
sm.density.compare(densitypscore2$pscore,group = densitypscore2$treat)
##propensity score matching using new_cps
#ATT
logit_m2 <- glm(treat~age+education+black+hispanic+married+nodegree+re74+re75,data=new_cps,family = binomial(link = "logit"))
match_ATT2 <- Match(Y=new_cps$re78,Tr=new_cps$treat,X=logit_m2$fitted,estimand="ATT",M=1,replace=T)
logit_m3 <- glm(treat~age+education+black+hispanic+married+nodegree+re74+re75+I(married*re75)+I(age*re74),data=new_cps,family = binomial(link = "logit"))
match_ATT3 <- Match(Y=new_cps$re78,Tr=new_cps$treat,X=logit_m3$fitted,estimand="ATT",M=1,replace=T)
summary(match_ATT2 )
summary(match_ATT3 )
# Cov Balance test
mb1 <- MatchBalance(treat~age+education+black+hispanic+married+nodegree+re74+re75,
data=new_cps, match.out=match_ATT2, nboots=10)
mb2 <- MatchBalance(treat~age+education+black+hispanic+married+nodegree+re74+re75+I(married*re75)+I(age*re74),
data=new_cps, match.out=match_ATT3, nboots=10)
# use package matchit to update data after match, DATA nsw_dw
library(MatchIt)
res_nsw_dw <- matchit(treat~age+education+black+black+hispanic+married+nodegree+re74+re75,
data=nsw_dw,method="nearest",ratio=1) # matching
library(Zelig)
z.out <- zelig(re78~treat+age+education+black+black+hispanic+married+nodegree+re74+re75,data=nsw_dw,model="ls")
xtreat <- setx(z.out,treat=1)
xcontrol <- setx(z.out,treat=0)
ATE <- sim(z.out,x=xcontrol,x1=xtreat)
summary(ATE)
res_nsw_dwA <- match.data(res_nsw_dw) # ALL DATA after match
res_nsw_dwT <- match.data(res_nsw_dw,group = "treat") # Treated group
res_nsw_dwC <- match.data(res_nsw_dw,group = "control") # Controls group after match
#-------------------------------------#
#-------Chapter7: IV estimation-------#
#-------------------------------------#
library(AER) # package created by Christian Kleiber & Achim Zeileis
# the authors of 《Applied Econometrics with R》
angrist <- read.dta13("ch7\\angrist.dta")
iv_fit_QTR1 <- ivreg(LWKLYWGE~EDUC|QTR1,data=angrist) #iv is QTR1 and result in P142
# first stage reg by ols:
# iv_fit_QTR1_freg <- lm(EDUC~QTR1,data=angrist)
# summary(iv_fit_QTR1_freg)
# first table in the p142
iv_fit_QTR4 <- ivreg(LWKLYWGE~EDUC|QTR4,data=angrist) #iv is QTR4 and result in P142
iv_fit_QTR123 <- ivreg(LWKLYWGE~EDUC|QTR1+QTR2+QTR3,data=angrist) #iv is QTR1,QTR2,QTR3
summary(iv_fit_QTR123) #result in P143
# Estimation of 7.3
angrist$year <- angrist$YOB+(angrist$QOB-1)/4
plotdata <- angrist[,c(65,3,6)]
plotdata_new <- ddply(plotdata,.(year),colwise(mean))
plot(plotdata_new$year,plotdata_new$EDUC,type = "b") # figure 7.2
plot(plotdata_new$year,plotdata_new$LWKLYWGE,type = "b") # figure 7.3
# another method for graphing
# library(ggplot2)
# ggplot(data=plotdata_new,aes(year,EDUC))+geom_point(colour=year)
## REG discrebed in Table in P145
# Colume 1、3、5、7
colume1_OLS <- lm(LWKLYWGE~EDUC+YR20+YR21+YR22+YR23+YR24+YR25+YR26+YR27+YR28,data=angrist)
colume3_OLS <- lm(LWKLYWGE~EDUC+AGEQ+AGEQSQ
+YR20+YR21+YR22+YR23+YR24+YR25+YR26+YR27+YR28,data=angrist)
colume5_OLS <- lm(LWKLYWGE~EDUC+RACE+MARRIED+SMSA
+NEWENG+MIDATL+ESOCENT+WNOCENT+SOATL+ESOCENT+WSOCENT+MT
+YR20+YR21+YR22+YR23+YR24+YR25+YR26+YR27+YR28,data=angrist)
colume7_OLS <- lm(LWKLYWGE~EDUC+AGEQ+AGEQSQ+RACE+MARRIED+SMSA
+NEWENG+MIDATL+ESOCENT+WNOCENT+SOATL+ESOCENT+WSOCENT+MT
+YR20+YR21+YR22+YR23+YR24+YR25+YR26+YR27+YR28,data=angrist)
# Colume 2、4、6、8
colume2_iv<- ivreg(LWKLYWGE~EDUC
+YR20+YR21+YR22+YR23+YR24+YR25+YR26+YR27+YR28|.-EDUC #multi-variablies,claim the edengous EDUC
+QTR120+QTR121+QTR122+QTR123+QTR124+QTR125+QTR126+QTR127
+QTR128+QTR129+QTR220+QTR221+QTR222+QTR223+QTR224+QTR225
+QTR226+QTR227+QTR228+QTR229+QTR320+QTR321+QTR322+QTR323
+QTR324+QTR325+QTR326+QTR327+QTR328+QTR329+YR20+YR21+YR22
+YR23+YR24+YR25+YR26+YR27+YR28,data=angrist)
colume4_iv<- ivreg(LWKLYWGE~EDUC+AGEQ+AGEQSQ
+YR20+YR21+YR22+YR23+YR24+YR25+YR26+YR27+YR28|.-EDUC
+QTR120+QTR121+QTR122+QTR123+QTR124+QTR125+QTR126+QTR127
+QTR128+QTR129+QTR220+QTR221+QTR222+QTR223+QTR224+QTR225
+QTR226+QTR227+QTR228+QTR229+QTR320+QTR321+QTR322+QTR323
+QTR324+QTR325+QTR326+QTR327+QTR328+QTR329+YR20+YR21+YR22
+YR23+YR24+YR25+YR26+YR27+YR28,data=angrist)
colume6_iv<- ivreg(LWKLYWGE~EDUC+RACE+MARRIED+SMSA
+NEWENG+MIDATL+ESOCENT+WNOCENT+SOATL+ESOCENT+WSOCENT+MT
+YR20+YR21+YR22+YR23+YR24+YR25+YR26+YR27+YR28|.-EDUC
+QTR120+QTR121+QTR122+QTR123+QTR124+QTR125+QTR126+QTR127
+QTR128+QTR129+QTR220+QTR221+QTR222+QTR223+QTR224+QTR225
+QTR226+QTR227+QTR228+QTR229+QTR320+QTR321+QTR322+QTR323
+QTR324+QTR325+QTR326+QTR327+QTR328+QTR329+YR20+YR21+YR22
+YR23+YR24+YR25+YR26+YR27+YR28,data=angrist)
colume8_iv<- ivreg(LWKLYWGE~EDUC+AGEQ+AGEQSQ+RACE+MARRIED+SMSA
+NEWENG+MIDATL+ESOCENT+WNOCENT+SOATL+ESOCENT+WSOCENT+MT
+YR20+YR21+YR22+YR23+YR24+YR25+YR26+YR27+YR28|.-EDUC
+QTR120+QTR121+QTR122+QTR123+QTR124+QTR125+QTR126+QTR127
+QTR128+QTR129+QTR220+QTR221+QTR222+QTR223+QTR224+QTR225
+QTR226+QTR227+QTR228+QTR229+QTR320+QTR321+QTR322+QTR323
+QTR324+QTR325+QTR326+QTR327+QTR328+QTR329+YR20+YR21+YR22
+YR23+YR24+YR25+YR26+YR27+YR28,data=angrist)
#---------------------------------------------#
#-------Chapter8: Mehtods of Panel Data-------#
#---------------------------------------------#
# DiD
cardkrueger <- read.dta13("ch8\\cardkrueger1994.dta")
cardkrueger$treat <- ifelse(cardkrueger$treated=="NJ",cardkrueger$treat <- 1,cardkrueger$treat <- 0)
Did <- lm(fte~treat+t+I(treat*t),data=cardkrueger)
summary(Did) # or Did$coefficients
# Synth
library(Synth) # Package created by Jens Hainmueller and Alexis Diamond
smoking <- read.dta13("ch8\\smoking.dta")
smoking$id <- as.numeric(smoking$state)
smoking$name <- as.character(smoking$state)
smoke_synth <- dataprep(
foo = smoking,
predictors = c("lnincome","age15to24","retprice"), # set other variables which time ranging is 1980:1988
predictors.op = "mean",
dependent = "cigsale",
unit.variable = "id",
time.variable = "year",
special.predictors = list(
list("cigsale", c(1975,1980,1988), "mean"), # set vatiables which time ranging is different from 1980:1988
list("beer", c(1984:1988), "mean")),
treatment.identifier = 3, # id of treatment
controls.identifier = c(1,2,4:39),
time.predictors.prior =c(1980:1988),
time.optimize.ssr = c(1970:1987), # MSPE
unit.names.variable = "name",
time.plot = 1970:2000 # Time
)
synth.out <- synth(data.prep.obj = smoke_synth)
synth.tables <- synth.tab(
dataprep.res = smoke_synth,
synth.res = synth.out
)
# results tables:
print(synth.tables)
# plot results:
# path
path.plot(synth.res = synth.out,
dataprep.res = smoke_synth,
Legend = c("Basque country","synthetic Basque country"))
## gaps
gaps.plot(synth.res = synth.out,
dataprep.res = smoke_synth)
#####NoteS: the result is differnt from the book . I do not know the reason.
#-------------------------------------------------#
#-------Chapter9: Regression Discontinuity--------#
#-------------------------------------------------#
library(rdrobust)
lee <- read.dta13("ch9\\lee.dta")
# Replicat the Result in Page220
Lee_1 <- lee[lee$margin >= -0.28 & lee$margin <= 0.28,]
Lee_1$dd <- ifelse(Lee_1$margin>0,Lee_1$d <- 1,Lee_1$d <- 0) # Creat Rdd
summary(lm(vote~dd,data=Lee_1)) #Result of Colume1
summary(lm(vote~dd+margin+I(dd*margin),data=Lee_1)) #Result in Colume2
# Replicat the Result in Page221
Lee_2 <- lee[lee$margin >= -0.5 & lee$margin <= 0.5,]
Lee_2$dd <- ifelse(Lee_2$margin>0,Lee_2$d <- 1,Lee_2$d <- 0) # Creat Rdd
summary(lm(vote~dd+margin+I(dd*margin),data=Lee_2)) # Result of Colume1
summary(lm(vote~dd+margin+I(margin^2)+I(dd*margin)+I(dd*margin^2),data=Lee_2)) # Result of Colume2
summary(lm(vote~dd+margin+I(margin^2)+I(margin^3)+I(dd*margin)+I(dd*margin^2)+I(dd*margin^3),data=Lee_2)) # Result of Colume3
summary(lm(vote~dd+margin+I(margin^2)+I(margin^3)+I(dd*margin)+I(dd*margin^2)+I(dd*margin^3)+I(dd*margin^4)+I(dd*margin^4),data=Lee_2)) # Result of Colume4
# Figure 9.12 using data Lee_2 in Page218
rdplot(y = Lee_2$vote, x = Lee_2$margin, nbins=50, p=2, # Defult is p=4
x.lim=c(-0.5,0.5),
y.lim=c(0.2,0.8),col.lines ="black",
x.label = 'Democratic Vote Share Margin of Victory, Election t',
y.label = 'Vote Share, Election t+1')
# Figure 9.13 in Page223
Lee_2_test1 <- Lee_2[Lee_2$margin < 0,]
Lee_2_test2 <- Lee_2[Lee_2$margin >= 0,]
rdplot(y = Lee_2_test1$vote, x = Lee_2_test1$margin, c=-0.25,p=4,
x.lim=c(-0.5,0),y.lim=c(0.2,0.5),
x.label=c("断点为-0.25"),col.lines ="black")
rdplot(y = Lee_2_test2$vote, x = Lee_2_test2$margin, c=0.25,p=4,
x.lim=c(0,0.5),y.lim=c(0.5,0.75),
x.label=c("断点为0.25"),col.lines ="black")
# Figure 9.8 in Page 206 and code edited by stata in Page219.
rdbwselect_2014(y = Lee_2$vote, x = Lee_2$margin, c=0,
kernel = "uniform", bwselect = "CV",
cvgrid_min = 0.1, cvgrid_max = 0.5, cvplot = TRUE)
# use rdbwselect_2014 rather rdbwselect
# Result shows the best bindwith is 0.28
# Result in Page226.
summary(rdbwselect(y = Lee_2$vote, x =Lee_2$margin, kernel = "uniform", c=0, all = T))
# Replicat the Result in Page227
summary(rdrobust(y = Lee_2$vote, x = Lee_2$margin,c=0, kernel = "uniform", all=T))
# Replicat the Result in Page228
set.seed(123)
x <- rnorm(10000,mean=10,sd=2)
e <- rnorm(10000,mean=0,sd=1)
u <- rnorm(10000,mean=0,sd=1)
for(i in 1:10000){
D[i] <- min(0.5*x[i]+u[i],5+u[i])
Y[i] <- 2*D[i]-0.5*x[i]+e[i]
}
rdplot(y = D, x = x, c=10, p=2,x.lim=c(0,20),y.lim=c(0,6),col.lines ="black",
x.label = "x",y.label = "D") # Figure 228 a
rdplot(y = Y, x = x, c=10, p=2,x.lim=c(0,20),y.lim=c(-2,6),col.lines ="black",
x.label = "x",y.label = "Y") # Figure 228 b
summary(rdrobust(Y, x, c=10, kernel = "uniform", fuzzy=D, deriv=1, p=2, all=T))
#-------------------------------------------------#
#-------Chapter10: Bunching-----------------------#
#-------------------------------------------------#
library(bunchr)
##-----------------------------------------------------Analyzing a kink
set.seed(42)
ability_vec <- 4000 * rbeta(100000, 2, 5) #生成模拟数
earning_vec <- sapply(ability_vec, earning_fun, 0.2, 0, 0.1, 0, 1000)
# earning_fun(n, elas, t1, t2, Tax, zstar)
# Arguments
#
# n Ability of person (earnings with zero tax)
# elas elasticity of earnings w.r.t. net-of-tax rate
# t1 Tax rate before notch/kink
# t2 Tax rate after notch/kink
# Tax height of notch (zero for pure kink)
# zstar place of notch/kink (critical earning point)
bunch_viewer(earning_vec, 1000, cf_start = 10, cf_end = 10, exclude_before = 2,
exclude_after = 2, binw = 50, trimy=F) #图示
kink_est1 <- bunch(earning_vec, zstar = 1000, t1 = 0, t2 = 0.1, Tax = 0,
cf_start = 10, cf_end = 10,
exclude_before = 2, exclude_after = 2, binw = 50, nboots = 100) ##已自动生成反事实数据
# Usage
#
# bunch(earnings, zstar, t1, t2, Tax = 0, cf_start = NA, cf_end = NA,
# exclude_before = NA, exclude_after = NA, force_after = FALSE,
# binw = 10, poly_size = 7, convergence = 0.01, max_iter = 100,
# correct = TRUE, select = TRUE, draw = TRUE, nboots = 0, seed = NA,
# progress = FALSE, title = "Bunching Visualization",
# varname = "Earnings")
# Arguments
#
# earnings Vector of earnings, hopefully a very large one.
# zstar Place of kink (critical earning point).
# t1 Marginal tax rate before kink.
# t2 Marginal tax rate after kink.
# Tax "Penalty" tax for crossing zstar.
# cf_start Number of bins before the kink bin where counter-factual histogram should start.
# cf_end Number of bins after the kink bin where counter-factual histogram should start.
# exclude_before Number of excluded bins before the kink bin.
# exclude_after Number of excluded bins after the kink bin.
# force_after For notch analysis, should bunch be forced to use of the provided exclude_after for the end of the bunching, rather than trying to find the bin where the sum of the integral is zero? See details at notch_estimator documentation.
# binw Bin width.
# poly_size Order of polynomial used to calculate counter-factual histogram.
# convergence Minimal rate of change of bunching estimate to stop iterations.
# max_iter Maximum number of iterations for bunching estimates.
# correct Should the counter-factual histogram be corrected to compensate for shifting left because of the notch? See details.
# select Should model selection be used to find counter-factual histogram? See details.
# draw Should a graph be drawn?
# nboots how many bootstraps should be run?
# seed specify seed for bootstraps (earnings sampling).
# progress Should a progress bar be desplayed?
# title Title for Plot output
# varname Name for running variable, to be desplayed in the plot
kink_est1$e
## [1] 0.186233
quantile(kink_est1$booted_e, probs=c(0, 0.05, 0.1, 0.5, 0.9, 0.95, 1))
## 0% 5% 10% 50% 90% 95%
## 0.09330628 0.11666582 0.13313885 0.18567137 0.23956820 0.25130516
## 100%
## 0.32462423
kink_est1$Bn
## [1] 1170.216
quantile(kink_est1$booted_Bn, probs=c(0, 0.05, 0.1, 0.5, 0.9, 0.95, 1))
## 0% 5% 10% 50% 90% 95% 100%
## 599.0476 744.2115 851.2940 1166.8193 1481.8489 1541.6775 1939.3720
#show Counter-Factuals
kink_est1$data$cf_counts
###调整带宽
kink_est2 <- bunch(earning_vec, zstar = 1000, t1 = 0, t2 = 0.1, Tax = 0,
cf_start = 500, cf_end = 500,
exclude_before = 10, exclude_after = 10, binw = 1,
nboots = 100, seed = 123, draw = F)
kink_est2$e
## [1] 0.1932915
quantile(kink_est2$booted_e, probs=c(0, 0.05, 0.1, 0.5, 0.9, 0.95, 1))
## 0% 5% 10% 50% 90% 95% 100%
## 0.1770582 0.1802953 0.1834727 0.1915006 0.2035105 0.2061229 0.2116499
kink_est2$Bn
## [1] 1223.928
quantile(kink_est2$booted_Bn, probs=c(0, 0.05, 0.1, 0.5, 0.9, 0.95, 1))
## 0% 5% 10% 50% 90% 95% 100%
## 1127.625 1143.042 1164.198 1219.175 1284.605 1304.872 1332.322
#show Counter-Factuals
kink_est2$data$cf_counts
##-----------------------------------------------------Analyzing a notch
earning_vec <- sapply(ability_vec, earning_fun, 0.2, 0.1, 0.1, 200, 1000)
bunch_viewer(earning_vec, 1000, 20, 50, 2, 25, binw = 20)
notch_est <- bunch(earning_vec, zstar = 1000, t1 = 0.1, t2 = 0.1, Tax = 200,
cf_start = 20, cf_end = 50, force_after = FALSE,
exclude_before = 2, exclude_after = 25, binw = 20,
nboots = 100, seed = 123)
notch_est$e
## [1] 0.1843316
quantile(notch_est$booted_e, probs=c(0, 0.05, 0.1, 0.5, 0.9, 0.95, 1))
## 0% 5% 10% 50% 90% 95% 100%
## 0.1203677 0.1407937 0.1621033 0.2074509 0.2074509 0.2074509 0.2074509
ability_vec_small <- 4000 * rbeta(10000, 2, 5)
earnings_small <- sapply(ability_vec_small, earning_fun, 0.2, 0, 0.1, 0, 1000)
kink_est <- bunch(earnings_small, zstar = 1000, t1 = 0, t2 = 0.1, Tax = 0,
cf_start = 10, cf_end = 10,
exclude_before = 1, exclude_after = 1, binw = 50,
nboots = 100, seed = 123)
kink_est$e
## [1] 0.1662341
quantile(kink_est$booted_e, probs=c(0, 0.05, 0.1, 0.5, 0.9, 0.95, 1))
## 0% 5% 10% 50% 90% 95%
## 0.04387312 0.07718377 0.09195058 0.17941217 0.28779019 0.30870107
## 100%
## 0.39275768
##大样本
ability_vec_large <- 4000 * rbeta(1000000, 2, 5)
earnings_large <- sapply(ability_vec_large, earning_fun, 0.2, 0, 0.1, 0, 1000)
kink_est <- bunch(earnings_large, zstar = 1000, t1 = 0, t2 = 0.1, Tax = 0,
cf_start = 50, cf_end = 50,
exclude_before = 5, exclude_after = 5, binw = 10,
nboots = 100, seed = 123)
kink_est$e
## [1] 0.183655
quantile(kink_est$booted_e, probs=c(0, 0.05, 0.1, 0.5, 0.9, 0.95, 1))
## 0% 5% 10% 50% 90% 95% 100%
## 0.1688440 0.1742967 0.1772704 0.1850824 0.1928552 0.1942905 0.1970645
kink_est <- bunch(earnings_large, zstar = 1000, t1 = 0, t2 = 0.1, Tax = 0,
cf_start = 50, cf_end = 50,
exclude_before = 1, exclude_after = 1, binw = 5,
nboots = 100, seed = 123, draw = F)
kink_est$e
## [1] 0.1949573
quantile(kink_est$booted_e, probs=c(0, 0.05, 0.1, 0.5, 0.9, 0.95, 1))
## 0% 5% 10% 50% 90% 95% 100%
## 0.1879073 0.1901380 0.1915570 0.1955756 0.1988548 0.2003031 0.2025746
#---------------------------------#
#-------Important REFERENCE-------#
#---------------------------------#
# [1]Abadie A, Diamond A, Hainmueller J. Synth: An R Package for Synthetic Control Methods in Comparative Case Studies[J]. Journal of Statistical Software, 2011, 42(13):1-17.
# [2]Calonico, S., M. D. Cattaneo, and R. Titiunik. rdrobust: An R Package for Robust Nonparametric Inference in Regression-Discontinuity Designs. R Journal, 2015b, 7(1): 38-51.
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。