代码拉取完成,页面将自动刷新
import numpy as np
from torch import nn, optim
from torch.autograd import Variable
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import torch
# 训练集
train_dataset = datasets.MNIST(root='./',
train=True,
transform=transforms.ToTensor(),
download=True)
# 测试集
test_dataset = datasets.MNIST(root='./',
train=False,
transform=transforms.ToTensor(),
download=True)
# 批次大小
batch_size = 64
# 装载训练集
train_loader = DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
# 装载训练集
test_loader = DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=True)
for i, data in enumerate(train_loader):
inputs, labels = data
print(inputs.shape)
print(labels.shape)
break
# 定义网络结构
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.layer1 = nn.Sequential(nn.Linear(784, 500), nn.Dropout(p=0.5), nn.Tanh())
self.layer2 = nn.Sequential(nn.Linear(500, 300), nn.Dropout(p=0.5), nn.Tanh())
self.layer3 = nn.Sequential(nn.Linear(300, 10), nn.Softmax(dim=1))
def forward(self, x):
# ([64, 1, 28, 28])->(64,784)
x = x.view(x.size()[0], -1)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
return x
LR = 0.5
# 定义模型
model = Net()
# 定义代价函数
mse_loss = nn.CrossEntropyLoss()
# 定义优化器
optimizer = optim.SGD(model.parameters(), LR)
def train():
# 训练状态
model.train()
for i, data in enumerate(train_loader):
# 获得一个批次的数据和标签
inputs, labels = data
# 获得模型预测结果(64,10)
out = model(inputs)
# 交叉熵代价函数out(batch,C), labels(batch)
loss = mse_loss(out, labels)
# 梯度清0
optimizer.zero_grad()
# 计算梯度
loss.backward()
# 修改权值
optimizer.step()
def test():
# 测试状态
model.eval()
correct = 0
for i, data in enumerate(test_loader):
# 获得一个批次的数据和标签
inputs, labels = data
# 获得模型预测结果(64,10)
out = model(inputs)
# 获得最大值,以及最大值所在的位置
_, predicted = torch.max(out, 1)
# 预测正确的数量
correct += (predicted == labels).sum()
print("Test acc:{0}".format(correct.item() / len(test_dataset)))
correct = 0
for i, data in enumerate(train_loader):
# 获得一个批次的数据和标签
inputs, labels = data
# 获得模型预测结果(64,10)
out = model(inputs)
# 获得最大值,以及最大值所在的位置
_, predicted = torch.max(out, 1)
# 预测正确的数量
correct += (predicted == labels).sum()
print("Train acc:{0}".format(correct.item() / len(train_dataset)))
for epoch in range(20):
print('epoch:', epoch)
train()
test()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。