15 Star 171 Fork 47

CV_Lab/Gradio-YOLOv5-Det

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
gradio_yolov5_det_v2.py 10.96 KB
一键复制 编辑 原始数据 按行查看 历史
代码阿尔法 提交于 2022-05-12 09:41 . v0.2.2 jupyter update
# Gradio YOLOv5 Det v0.2
# 创建人:曾逸夫
# 创建时间:2022-05-01
import os
os.system("pip install gradio==2.9.4")
import argparse
import csv
import json
import sys
from pathlib import Path
import gradio as gr
import torch
import yaml
from PIL import Image, ImageDraw, ImageFont
from util.fonts_opt import is_fonts
from util.pdf_opt import pdf_generate
ROOT_PATH = sys.path[0] # 根目录
# 本地模型路径
local_model_path = f"{ROOT_PATH}/yolov5"
# Gradio YOLOv5 Det版本
GYD_VERSION = "Gradio YOLOv5 Det v0.3"
# 模型名称临时变量
model_name_tmp = ""
# 设备临时变量
device_tmp = ""
# 文件后缀
suffix_list = [".csv", ".yaml"]
# 字体大小
FONTSIZE = 25
def parse_args(known=False):
parser = argparse.ArgumentParser(description="Gradio YOLOv5 Det v0.2")
parser.add_argument("--model_name", "-mn", default="yolov5s", type=str, help="model name")
parser.add_argument(
"--model_cfg",
"-mc",
default="./model_config/model_name_p5_all.yaml",
type=str,
help="model config",
)
parser.add_argument(
"--cls_name",
"-cls",
default="./cls_name/cls_name_zh.yaml",
type=str,
help="cls name",
)
parser.add_argument(
"--nms_conf",
"-conf",
default=0.5,
type=float,
help="model NMS confidence threshold",
)
parser.add_argument("--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold")
parser.add_argument(
"--label_dnt_show",
"-lds",
action="store_true",
default=False,
help="label show",
)
parser.add_argument(
"--device",
"-dev",
default="0",
type=str,
help="cuda or cpu",
)
parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size")
args = parser.parse_known_args()[0] if known else parser.parse_args()
return args
# yaml文件解析
def yaml_parse(file_path):
return yaml.safe_load(open(file_path, encoding="utf-8").read())
# yaml csv 文件解析
def yaml_csv(file_path, file_tag):
file_suffix = Path(file_path).suffix
if file_suffix == suffix_list[0]:
# 模型名称
file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv版
elif file_suffix == suffix_list[1]:
# 模型名称
file_names = yaml_parse(file_path).get(file_tag) # yaml版
else:
print(f"{file_path}格式不正确!程序退出!")
sys.exit()
return file_names
# 模型加载
def model_loading(model_name, device):
# 加载本地模型
model = torch.hub.load(
local_model_path,
"custom",
path=f"{local_model_path}/{model_name}",
source="local",
device=device,
_verbose=False,
)
return model
# 检测信息
def export_json(results, model, img_size):
return [
[
{
"id": i,
"class": int(result[i][5]),
# "class_name": model.model.names[int(result[i][5])],
"class_name": model_cls_name_cp[int(result[i][5])],
"normalized_box": {
"x0": round(result[i][:4].tolist()[0], 6),
"y0": round(result[i][:4].tolist()[1], 6),
"x1": round(result[i][:4].tolist()[2], 6),
"y1": round(result[i][:4].tolist()[3], 6),},
"confidence": round(float(result[i][4]), 2),
"fps": round(1000 / float(results.t[1]), 2),
"width": img_size[0],
"height": img_size[1],} for i in range(len(result))] for result in results.xyxyn]
# 帧转换
def pil_draw(img, countdown_msg, textFont, xyxy, font_size, label_opt):
img_pil = ImageDraw.Draw(img)
img_pil.rectangle(xyxy, fill=None, outline="green") # 边界框
if label_opt:
text_w, text_h = textFont.getsize(countdown_msg) # 标签尺寸
img_pil.rectangle(
(xyxy[0], xyxy[1], xyxy[0] + text_w, xyxy[1] + text_h),
fill="green",
outline="green",
) # 标签背景
img_pil.multiline_text(
(xyxy[0], xyxy[1]),
countdown_msg,
fill=(205, 250, 255),
font=textFont,
align="center",
)
return img
# YOLOv5图片检测函数
def yolo_det(img, device, model_name, inference_size, conf, iou, label_opt, model_cls, opt):
global model, model_name_tmp, device_tmp
if model_name_tmp != model_name:
# 模型判断,避免反复加载
model_name_tmp = model_name
model = model_loading(model_name_tmp, device)
elif device_tmp != device:
device_tmp = device
model = model_loading(model_name_tmp, device)
# -----------模型调参-----------
model.conf = conf # NMS 置信度阈值
model.iou = iou # NMS IOU阈值
model.max_det = 1000 # 最大检测框数
model.classes = model_cls # 模型类别
results = model(img, size=inference_size) # 检测
img_size = img.size # 帧尺寸
# ----------------加载字体----------------
yaml_index = cls_name.index(".yaml")
cls_name_lang = cls_name[yaml_index - 2:yaml_index]
if cls_name_lang == "zh":
# 中文
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE)
elif cls_name_lang in ["en", "ru", "es", "ar"]:
# 英文、俄语、西班牙语、阿拉伯语
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE)
elif cls_name_lang == "ko":
# 韩语
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE)
det_img = img.copy()
for result in results.xyxyn:
for i in range(len(result)):
id = int(i) # 实例ID
obj_cls_index = int(result[i][5]) # 类别索引
obj_cls = model_cls_name_cp[obj_cls_index] # 类别
# ------------边框坐标------------
x0 = float(result[i][:4].tolist()[0])
y0 = float(result[i][:4].tolist()[1])
x1 = float(result[i][:4].tolist()[2])
y1 = float(result[i][:4].tolist()[3])
# ------------边框实际坐标------------
x0 = int(img_size[0] * x0)
y0 = int(img_size[1] * y0)
x1 = int(img_size[0] * x1)
y1 = int(img_size[1] * y1)
conf = float(result[i][4]) # 置信度
# fps = f"{(1000 / float(results.t[1])):.2f}" # FPS
det_img = pil_draw(
img,
f"{id}-{obj_cls}:{conf:.2f}",
textFont,
[x0, y0, x1, y1],
FONTSIZE,
label_opt,
)
det_json = export_json(results, model, img.size)[0] # 检测信息
# JSON格式化
det_json_format = json.dumps(det_json, sort_keys=True, indent=4, separators=(",", ":"), ensure_ascii=False)
# -------pdf-------
report = "./Det_Report.pdf"
if "pdf" in opt:
pdf_generate(f"{det_json_format}", report, GYD_VERSION)
else:
report = None
if "json" not in opt:
det_json = None
return det_img, det_json, report
def main(args):
gr.close_all()
global model, model_cls_name_cp, cls_name
slider_step = 0.05 # 滑动步长
nms_conf = args.nms_conf
nms_iou = args.nms_iou
label_opt = args.label_dnt_show
model_name = args.model_name
model_cfg = args.model_cfg
cls_name = args.cls_name
device = args.device
inference_size = args.inference_size
is_fonts(f"{ROOT_PATH}/fonts") # 检查字体文件
# 模型加载
model = model_loading(model_name, device)
model_names = yaml_csv(model_cfg, "model_names")
model_cls_name = yaml_csv(cls_name, "model_cls_name")
model_cls_name_cp = model_cls_name.copy() # 类别名称
# -------------------输入组件-------------------
inputs_img = gr.inputs.Image(type="pil", label="原始图片")
inputs_device = gr.inputs.Dropdown(choices=["0", "cpu"], default=device, type="value", label="设备")
inputs_model = gr.inputs.Dropdown(choices=model_names, default=model_name, type="value", label="模型")
inputs_size = gr.inputs.Radio(choices=[320, 640], default=inference_size, label="推理尺寸")
input_conf = gr.inputs.Slider(0, 1, step=slider_step, default=nms_conf, label="置信度阈值")
inputs_iou = gr.inputs.Slider(0, 1, step=slider_step, default=nms_iou, label="IoU 阈值")
inputs_label = gr.inputs.Checkbox(default=(not label_opt), label="标签显示")
inputs_clsName = gr.inputs.CheckboxGroup(choices=model_cls_name, default=model_cls_name, type="index", label="类别")
inputs_opt = gr.inputs.CheckboxGroup(choices=["pdf", "json"], default=["pdf"], type="value", label="操作")
# 输入参数
inputs = [
inputs_img, # 输入图片
inputs_device, # 设备
inputs_model, # 模型
inputs_size, # 推理尺寸
input_conf, # 置信度阈值
inputs_iou, # IoU阈值
inputs_label, # 标签显示
inputs_clsName, # 类别
inputs_opt, # 检测操作
]
# 输出参数
outputs_img = gr.outputs.Image(type="pil", label="检测图片")
outputs02_json = gr.outputs.JSON(label="检测信息")
outputs03_pdf = gr.outputs.File(label="下载检测报告")
outputs = [outputs_img, outputs02_json, outputs03_pdf]
# 标题
title = "基于Gradio的YOLOv5通用目标检测系统v0.2"
# 描述
description = "<div align='center'>可自定义目标检测模型、安装简单、使用方便</div>"
# 示例图片
examples = [
[
"./img_example/bus.jpg",
"cpu",
"yolov5s",
640,
0.6,
0.5,
True,
["人", "公交车"],
["pdf"],],
[
"./img_example/Millenial-at-work.jpg",
"0",
"yolov5l",
320,
0.5,
0.45,
True,
["人", "椅子", "杯子", "笔记本电脑"],
["json"],],
[
"./img_example/zidane.jpg",
"0",
"yolov5m",
640,
0.25,
0.5,
False,
["人", "领带"],
["pdf", "json"],],]
# 接口
gr.Interface(
fn=yolo_det,
inputs=inputs,
outputs=outputs,
title=title,
description=description,
examples=examples,
theme="seafoam",
# live=True, # 实时变更输出
flagging_dir="run", # 输出目录
# flagging_options=["good", "generally", "bad"],
# allow_flagging="auto",
# ).launch(inbrowser=True, auth=['admin', 'admin'])
).launch(
inbrowser=True, # 自动打开默认浏览器
show_tips=True, # 自动显示gradio最新功能
# favicon_path="./icon/logo.ico",
)
if __name__ == "__main__":
args = parse_args()
main(args)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/CV_Lab/gradio_yolov5_det.git
[email protected]:CV_Lab/gradio_yolov5_det.git
CV_Lab
gradio_yolov5_det
Gradio-YOLOv5-Det
master

搜索帮助