1 Star 0 Fork 4

Anders221/project_3408244

forked from Carl-Xie/AutodiffEngine 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
lr_autodiff.py 2.49 KB
一键复制 编辑 原始数据 按行查看 历史
Carl-Xie 提交于 2018-03-18 20:33 . 迁移
import autodiff as ad
import numpy as np
def logistic_prob(_w):
def wrapper(_x):
return 1 / (1 + np.exp(-np.sum(_x * _w)))
return wrapper
def test_accuracy(_w, _X, _Y):
prob = logistic_prob(_w)
correct = 0
total = len(_Y)
for i in range(len(_Y)):
x = _X[i]
y = _Y[i]
p = prob(x)
if p >= 0.5 and y == 1.0:
correct += 1
elif p < 0.5 and y == 0.0:
correct += 1
print("总数:%d, 预测正确:%d" % (total, correct))
def plot(N, X_val, Y_val, w, with_boundary=False):
import matplotlib.pyplot as plt
for i in range(N):
__x = X_val[i]
if Y_val[i] == 1:
plt.plot(__x[1], __x[2], marker='x')
else:
plt.plot(__x[1], __x[2], marker='o')
if with_boundary:
min_x1 = min(X_val[:, 1])
max_x1 = max(X_val[:, 1])
min_x2 = float(-w[0] - w[1] * min_x1) / w[2]
max_x2 = float(-w[0] - w[1] * max_x1) / w[2]
plt.plot([min_x1, max_x1], [min_x2, max_x2], '-r')
plt.show()
def gen_2d_data(n):
x_data = np.random.random([n, 2])
y_data = np.ones(n)
for i in range(n):
d = x_data[i]
if d[0] + d[1] < 1:
y_data[i] = 0
x_data_with_bias = np.ones([n, 3])
x_data_with_bias[:, 1:] = x_data
return x_data_with_bias, y_data
def auto_diff_lr():
x = ad.Variable(name='x')
w = ad.Variable(name='w')
y = ad.Variable(name='y')
# 注意,以下实现某些情况会有很大的数值误差,
# 所以一般真实系统实现会提供高阶算子,从而减少数值误差
h = 1 / (1 + ad.exp(-ad.reduce_sum(w * x)))
L = y * ad.log(h) + (1 - y) * ad.log(1 - h)
w_grad, = ad.gradients(L, [w])
executor = ad.Executor([L, w_grad])
N = 100
X_val, Y_val = gen_2d_data(N)
w_val = np.ones(3)
plot(N, X_val, Y_val, w_val)
executor = ad.Executor([L, w_grad])
test_accuracy(w_val, X_val, Y_val)
alpha = 0.01
max_iters = 300
for iteration in range(max_iters):
acc_L_val = 0
for i in range(N):
x_val = X_val[i]
y_val = np.array(Y_val[i])
L_val, w_grad_val = executor.run(feed_dict={w: w_val, x: x_val, y: y_val})
w_val += alpha * w_grad_val
acc_L_val += L_val
print("iter = %d, likelihood = %s, w = %s" % (iteration, acc_L_val, w_val))
test_accuracy(w_val, X_val, Y_val)
plot(N, X_val, Y_val, w_val, True)
if __name__ == '__main__':
auto_diff_lr()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/Anders221/AutodiffEngine.git
[email protected]:Anders221/AutodiffEngine.git
Anders221
AutodiffEngine
project_3408244
master

搜索帮助