代码拉取完成,页面将自动刷新
同步操作将从 Futrime/实时视频人像抹除 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
/*
* @license
* Modifications copyright 2020 Zijian Zhang.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
*
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
const video = document.getElementById('webcam');
const liveView = document.getElementById('liveView');
const demosSection = document.getElementById('demos');
const DEBUG = false;
// The URL at which the models are located
// e.g 'https://storage.googleapis.com/tfjs-models/savedmodel/bodypix'
// If you use ./model-downloader.py to download models,
// you might need to modified the URL below to './model-downloader/bodypix'
const MODEL_BASE_URL = 'https://storage.googleapis.com/tfjs-models/savedmodel/bodypix'
// An object to configure parameters to set for the bodypix model.
// See github docs of tfjs-models for explanations.
// All the four (For ResNet50 is three) parameters ARE REQUIRED!!!
const bodyPixProperties = {
// Either 'MobileNetV1'(Faster, Slimmer but less accurate and poorer quality)
// or 'ResNet50'(More accurate, better quality but slower and larger)
architecture: 'MobileNetV1',
// Either 8 or 16 for MobileNet; 16 or 32 for ResNet50.
// The larger the less accurate but faster and slimmer.
outputStride: 16,
// Just for MobileNet. Either 0.50, 0.75 or 1.00.
// The smaller the less accurate but faster and slimmer.
multiplier: 0.75,
// Either 1, 2 or 4. The smaller the slimmer but less accurate
quantBytes: 2
};
// An object to configure parameters for detection. I have raised
// the segmentation threshold to 90% confidence to reduce the
// number of false positives.
const segmentationProperties = {
flipHorizontal: false,
// The resolution for model to recognize your bodyPix.
// 'medium' = 50%, 'high' = '75%', 'full' = 100%, The higher the better but slower.
// e.g. 'medium' with a 1080p camera(1920x1080) will be set to 960x540.
internalResolution: 'medium',
segmentationThreshold: 0.5,
scoreThreshold: 0.2
};
// Render returned segmentation data to a given canvas context.
function processSegmentation(canvas, segmentation) {
var ctx = canvas.getContext('2d');
console.log(segmentation)
// Get data from our overlay canvas which is attempting to estimate background.
var imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
var data = imageData.data;
// Get data from the live webcam view which has all data.
var liveData = videoRenderCanvasCtx.getImageData(0, 0, canvas.width, canvas.height);
var dataL = liveData.data;
var minX = 100000, minY = 100000, maxX = 0, maxY = 0;
var foundBody = false;
// Go through pixels and figure out bounding box of body pixels.
for (let x = 0; x < canvas.width; x++) {
for (let y = 0; y < canvas.height; y++) {
let n = y * canvas.width + x;
// Human pixel found. Update bounds.
if (segmentation.data[n] !== -1) {
if(x < minX) minX = x;
if(y < minY) minY = y;
if(x > maxX) maxX = x;
if(y > maxY) maxY = y;
foundBody = true;
}
}
}
// Calculate dimensions of bounding box.
var width = maxX - minX, height = maxY - minY;
// Define scale factor to use to allow for false negatives around this region.
var scale = 1.3;
// Define scaled dimensions.
var newWidth = width * scale, newHeight = height * scale;
// Caculate the offset to place new bounding box so scaled from center of current bounding box.
var offsetX = (newWidth - width) / 2, offsetY = (newHeight - height) / 2;
var newXMin = minX - offsetX, newYMin = minY - offsetY;
// Now loop through update backgound understanding with new data
// if not inside a bounding box.
for (let x = 0; x < canvas.width; x++) {
for (let y = 0; y < canvas.height; y++) {
// If outside bounding box and we found a body, update background.
if (foundBody && (x < newXMin || x > newXMin + newWidth) || ( y < newYMin || y > newYMin + newHeight)) {
// Convert xy co-ords to array offset.
let n = y * canvas.width + x;
data[n * 4] = dataL[n * 4];
data[n * 4 + 1] = dataL[n * 4 + 1];
data[n * 4 + 2] = dataL[n * 4 + 2];
data[n * 4 + 3] = 255;
} else if (!foundBody) {
// No body found at all, update all pixels.
let n = y * canvas.width + x;
data[n * 4] = dataL[n * 4];
data[n * 4 + 1] = dataL[n * 4 + 1];
data[n * 4 + 2] = dataL[n * 4 + 2];
data[n * 4 + 3] = 255;
}
}
}
ctx.putImageData(imageData, 0, 0);
if (DEBUG) {
ctx.strokeStyle = "#00FF00"
ctx.beginPath();
ctx.rect(newXMin, newYMin, newWidth, newHeight);
ctx.stroke();
}
}
// Which bodyparts to display. Please see https://github.com/tensorflow/tfjs-models/blob/master/body-pix/README.md#the-body-parts
const bodypart = [0, 1];
function processBodypart(canvas, bgcanvas, segmentation) {
var ctx = canvas.getContext('2d');
console.log(segmentation)
// Get data from our overlay canvas which is attempting to estimate background.
var imageData = bgcanvas.getContext('2d').getImageData(0, 0, canvas.width, canvas.height);
var data = imageData.data;
// Get data from the live webcam view which has all data.
var liveData = videoRenderCanvasCtx.getImageData(0, 0, canvas.width, canvas.height);
var dataL = liveData.data;
var minX = 100000, minY = 100000, maxX = 0, maxY = 0;
var foundBody = false;
// Go through pixels and figure out bounding box of body pixels.
for (let x = 0; x < canvas.width; x++) {
for (let y = 0; y < canvas.height; y++) {
let n = y * canvas.width + x;
// Human pixel found. Update bounds.
if (bodypart.indexOf(segmentation.data[n]) != -1) {
if(x < minX) minX = x;
if(y < minY) minY = y;
if(x > maxX) maxX = x;
if(y > maxY) maxY = y;
foundBody = true;
}
}
}
// Calculate dimensions of bounding box.
var width = maxX - minX, height = maxY - minY;
// Define scale factor to use to allow for false negatives around this region.
var scale = 1.1;
// Define scaled dimensions.
var newWidth = width * scale, newHeight = height * scale;
// Caculate the offset to place new bounding box so scaled from center of current bounding box.
var offsetX = (newWidth - width) / 2, offsetY = (newHeight - height) / 2;
var newXMin = minX - offsetX, newYMin = minY - offsetY;
// Now loop through update backgound understanding with new data
// if not inside a bounding box.
for (let x = 0; x < canvas.width; x++) {
for (let y = 0; y < canvas.height; y++) {
// If outside bounding box and we found a body, update background.
if (foundBody && (x >= newXMin && x <= newXMin + newWidth) && ( y >= newYMin && y <= newYMin + newHeight)) {
// Convert xy co-ords to array offset.
let n = y * canvas.width + x;
data[n * 4] = dataL[n * 4];
data[n * 4 + 1] = dataL[n * 4 + 1];
data[n * 4 + 2] = dataL[n * 4 + 2];
data[n * 4 + 3] = 255;
}
}
}
ctx.putImageData(imageData, 0, 0);
if (DEBUG) {
ctx.strokeStyle = "#00FF00"
ctx.beginPath();
ctx.rect(newXMin, newYMin, newWidth, newHeight);
ctx.stroke();
}
}
// Let's load the model with our parameters defined above.
// Before we can use bodypix class we must wait for it to finish
// loading. Machine Learning models can be large and take a moment to
// get everything needed to run.
var modelHasLoaded = false;
var model = undefined;
// Parse the BodyPixProperties
function getBodyPixModelUrl(config){
const config_url = {
architecture: {
'MobileNetV1': '/mobilenet',
'ResNet50': '/resnet50'
},
outputStride: {
8: '/model-stride8.json',
16: '/model-stride16.json',
32: '/model-stride32.json',
},
multiplier: {
1.0: '/100',
0.75: '/075',
0.5: '/050'
},
quantBytes: {
4: '/float',
2: '/quant2',
1: '/quant1'
}
};
let multiplier = (config['architecture'] == 'MobileNetV1')?
config_url['multiplier'][config['multiplier']]: '';
let url = MODEL_BASE_URL + config_url['architecture'][config['architecture']];
url += config_url['quantBytes'][config['quantBytes']];
url += multiplier;
url += config_url['outputStride'][config['outputStride']];
return url;
}
let bodyPixModelUrl = getBodyPixModelUrl(bodyPixProperties);
bodyPix.load({modelUrl: bodyPixModelUrl}).then(function (loadedModel) {
model = loadedModel;
modelHasLoaded = true;
// Show demo section now model is ready to use.
demosSection.classList.remove('invisible');
});
/********************************************************************
// Continuously grab image from webcam stream and classify it.
********************************************************************/
var previousSegmentationComplete = true;
// Check if webcam access is supported.
function hasGetUserMedia() {
return !!(navigator.mediaDevices &&
navigator.mediaDevices.getUserMedia);
}
// This function will repeatidly call itself when the browser is ready to process
// the next frame from webcam.
let fps_last_time = new Date().getTime();
let fps_count = 0;
function predictWebcam() {
if (previousSegmentationComplete) {
// Copy the video frame from webcam to a tempory canvas in memory only (not in the DOM).
videoRenderCanvasCtx.drawImage(video, 0, 0);
previousSegmentationComplete = false;
// Now classify the canvas image we have available.
model.segmentPersonParts(videoRenderCanvas, segmentationProperties)
.then(function(segmentation) {
processSegmentation(webcamCanvas, segmentation);
processBodypart(bodypartCanvas, webcamCanvas, segmentation);
previousSegmentationComplete = true;
});
}
// Display the frame rate
if(++fps_count == 10){
fps_count = 0;
let fps_now_time = new Date().getTime()
$("#fps").text("Frame Rate: " + (10.0 / (fps_now_time - fps_last_time) * 1000).toFixed(2) + " FPS");
fps_last_time = fps_now_time;
}
// Call this function again to keep predicting when the browser is ready.
window.requestAnimationFrame(predictWebcam);
}
// Enable the live webcam view and start classification.
function enableCam(event) {
if (!modelHasLoaded) {
return;
}
// Hide the button.
event.target.classList.add('invisible');
// getUsermedia parameters.
const constraints = {
video: true
};
// Activate the webcam stream.
navigator.mediaDevices.getUserMedia(constraints).then(function(stream) {
video.addEventListener('loadedmetadata', function() {
// Update widths and heights once video is successfully played otherwise
// it will have width and height of zero initially causing classification
// to fail.
webcamCanvas.width = video.videoWidth;
webcamCanvas.height = video.videoHeight;
bodypartCanvas.width = video.videoWidth;
bodypartCanvas.height = video.videoHeight;
videoRenderCanvas.width = video.videoWidth;
videoRenderCanvas.height = video.videoHeight;
let webcamCanvasCtx = webcamCanvas.getContext('2d');
webcamCanvasCtx.drawImage(video, 0, 0);
let bodypartCanvasCtx = bodypartCanvas.getContext('2d');
bodypartCanvasCtx.drawImage(video, 0, 0);
});
video.srcObject = stream;
video.addEventListener('loadeddata', predictWebcam);
});
}
// We will create a tempory canvas to render to store frames from
// the web cam stream for classification.
var videoRenderCanvas = document.createElement('canvas');
var videoRenderCanvasCtx = videoRenderCanvas.getContext('2d');
// Lets create a canvas to render our findings to the DOM.
var webcamCanvas = document.createElement('canvas');
webcamCanvas.setAttribute('class', 'overlay w-100 mh-100');
liveView.appendChild(webcamCanvas);
// Create a canvas to render body parts to the DOM.
var bodypartCanvas = document.createElement('canvas');
bodypartCanvas.setAttribute('class', 'overlay w-100 mh-100');
liveView.appendChild(bodypartCanvas);
// If webcam supported, add event listener to button for when user
// wants to activate it.
if (hasGetUserMedia()) {
const enableWebcamButton = document.getElementById('webcamButton');
enableWebcamButton.addEventListener('click', enableCam);
} else {
console.warn('getUserMedia() is not supported by your browser');
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。