# -*- coding: utf-8 -*-
import os
import cv2
import numpy as np
# from sklearn.cross_validation import train_test_split
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.neighbors import KNeighborsClassifier

# ----------------------------------------------------------------------------------
# 第一步 切分训练集和测试集
# ----------------------------------------------------------------------------------

X = []  # 定义图像名称
Y = []  # 定义图像分类类标
Z = []  # 定义图像像素

for i in range(0, 10):
    # 遍历文件夹,读取图片
    for f in os.listdir("photo2/%s" % i):
        # 获取图像名称
        X.append("photo2//" + str(i) + "//" + str(f))
        # 获取图像类标即为文件夹名称
        Y.append(i)

X = np.array(X)
Y = np.array(Y)

# 随机率为100% 选取其中的30%作为测试集
X_train, X_test, y_train, y_test = train_test_split(X, Y,
                                                    test_size=0.2, random_state=1)

print(len(X_train), len(X_test), len(y_train), len(y_test))

# ----------------------------------------------------------------------------------
# 第二步 图像读取及转换为像素直方图
# ----------------------------------------------------------------------------------

# 训练集
XX_train = []
for i in X_train:
    # 读取图像
    # print i
    image = cv2.imdecode(np.fromfile(i, dtype=np.uint8), cv2.IMREAD_COLOR)

    # 图像像素大小一致
    img = cv2.resize(image, (256, 256),
                     interpolation=cv2.INTER_CUBIC)

    # 计算图像直方图并存储至X数组
    hist = cv2.calcHist([img], [0, 1], None,
                        [256, 256], [0.0, 255.0, 0.0, 255.0])

    XX_train.append(((hist / 255).flatten()))

# 测试集
XX_test = []
for i in X_test:
    # 读取图像
    # print i
    image = cv2.imdecode(np.fromfile(i, dtype=np.uint8), cv2.IMREAD_COLOR)

    # 图像像素大小一致
    img = cv2.resize(image, (256, 256),
                     interpolation=cv2.INTER_CUBIC)

    # 计算图像直方图并存储至X数组
    hist = cv2.calcHist([img], [0, 1], None,
                        [256, 256], [0.0, 255.0, 0.0, 255.0])

    XX_test.append(((hist / 255).flatten()))

# ----------------------------------------------------------------------------------
# 第三步 基于KNN的图像分类处理
# ----------------------------------------------------------------------------------

clf = KNeighborsClassifier(n_neighbors=11).fit(XX_train, y_train)
predictions_labels = clf.predict(XX_test)

print(u'预测结果:')
print(predictions_labels)

print(u'算法评价:')
print((classification_report(y_test, predictions_labels)))

# 输出前10张图片及预测结果
# k = 0
# while k < 10:
#     # 读取图像
#     print(X_test[k])
#     image = cv2.imread(X_test[k])
#     print(predictions_labels[k])
#     # 显示图像
#     cv2.imshow("img", image)
#     cv2.waitKey(0)
#     cv2.destroyAllWindows()
#     k = k + 1