\n","
<xarray.Dataset>\n","Dimensions: (chain: 1, draw: 5000)\n","Coordinates:\n"," * chain (chain) int64 0\n"," * draw (draw) int64 0 1 2 3 4 5 ... 4995 4996 4997 4998 4999\n","Data variables: (12/17)\n"," acceptance_rate (chain, draw) float64 0.5652 1.0 ... 0.5689 1.0\n"," diverging (chain, draw) bool False False False ... False False\n"," energy (chain, draw) float64 28.89 27.74 ... 28.47 27.81\n"," energy_error (chain, draw) float64 0.8018 -0.9568 ... -0.6153\n"," index_in_trajectory (chain, draw) int64 1 -1 0 -1 0 0 ... -1 1 -1 -1 1 -1\n"," largest_eigval (chain, draw) float64 nan nan nan nan ... nan nan nan\n"," ... ...\n"," process_time_diff (chain, draw) float64 0.000113 8.7e-05 ... 9.1e-05\n"," reached_max_treedepth (chain, draw) bool False False False ... False False\n"," smallest_eigval (chain, draw) float64 nan nan nan nan ... nan nan nan\n"," step_size (chain, draw) float64 1.603 1.603 ... 1.603 1.603\n"," step_size_bar (chain, draw) float64 1.338 1.338 ... 1.338 1.338\n"," tree_depth (chain, draw) int64 2 1 1 1 1 1 2 2 ... 2 1 1 1 1 1 1\n","Attributes:\n"," created_at: 2024-10-14T02:22:18.262637+00:00\n"," arviz_version: 0.19.0\n"," inference_library: pymc\n"," inference_library_version: 5.17.0\n"," sampling_time: 0.9197731018066406\n"," tuning_steps: 1000
acceptance_rate
(chain, draw)
float64
0.5652 1.0 0.09468 ... 0.5689 1.0
array([[0.56522152, 1. , 0.094679 , ..., 1. , 0.56888785,\n"," 1. ]])
diverging
(chain, draw)
bool
False False False ... False False
array([[False, False, False, ..., False, False, False]])
energy
(chain, draw)
float64
28.89 27.74 28.93 ... 28.47 27.81
array([[28.89167245, 27.73963773, 28.92839744, ..., 27.64194037,\n"," 28.47245732, 27.80524676]])
energy_error
(chain, draw)
float64
0.8018 -0.9568 ... 0.5641 -0.6153
array([[ 0.80183807, -0.95681679, 0. , ..., -0.26485964,\n"," 0.56407197, -0.61528949]])
index_in_trajectory
(chain, draw)
int64
1 -1 0 -1 0 0 ... -1 1 -1 -1 1 -1
array([[ 1, -1, 0, ..., -1, 1, -1]])
largest_eigval
(chain, draw)
float64
nan nan nan nan ... nan nan nan nan
array([[nan, nan, nan, ..., nan, nan, nan]])
lp
(chain, draw)
float64
-28.7 -26.93 ... -28.28 -27.14
array([[-28.69590132, -26.92952671, -26.92952671, ..., -27.23383504,\n"," -28.27516543, -27.13928263]])
max_energy_error
(chain, draw)
float64
0.9362 -0.9568 ... 0.5641 -0.6153
array([[ 0.93616344, -0.95681679, 2.35726308, ..., -0.26485964,\n"," 0.56407197, -0.61528949]])
n_steps
(chain, draw)
float64
3.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0
array([[3., 1., 1., ..., 1., 1., 1.]])
perf_counter_diff
(chain, draw)
float64
0.0001112 7.075e-05 ... 7.733e-05
array([[1.11208006e-04, 7.07500149e-05, 6.32500160e-05, ...,\n"," 6.85409759e-05, 7.30829779e-05, 7.73339998e-05]])
perf_counter_start
(chain, draw)
float64
3.924e+05 3.924e+05 ... 3.924e+05
array([[392389.81603375, 392389.81616675, 392389.81626033, ...,\n"," 392390.54765 , 392390.54773788, 392390.54782979]])
process_time_diff
(chain, draw)
float64
0.000113 8.7e-05 ... 9.1e-05
array([[1.13e-04, 8.70e-05, 7.80e-05, ..., 8.40e-05, 8.40e-05, 9.10e-05]])
reached_max_treedepth
(chain, draw)
bool
False False False ... False False
array([[False, False, False, ..., False, False, False]])
smallest_eigval
(chain, draw)
float64
nan nan nan nan ... nan nan nan nan
array([[nan, nan, nan, ..., nan, nan, nan]])
step_size
(chain, draw)
float64
1.603 1.603 1.603 ... 1.603 1.603
array([[1.60301898, 1.60301898, 1.60301898, ..., 1.60301898, 1.60301898,\n"," 1.60301898]])
step_size_bar
(chain, draw)
float64
1.338 1.338 1.338 ... 1.338 1.338
array([[1.33769152, 1.33769152, 1.33769152, ..., 1.33769152, 1.33769152,\n"," 1.33769152]])
tree_depth
(chain, draw)
int64
2 1 1 1 1 1 2 2 ... 2 2 1 1 1 1 1 1
array([[2, 1, 1, ..., 1, 1, 1]])
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,\n"," ...\n"," 4990, 4991, 4992, 4993, 4994, 4995, 4996, 4997, 4998, 4999],\n"," dtype='int64', name='draw', length=5000))
- created_at :
- 2024-10-14T02:22:18.262637+00:00
- arviz_version :
- 0.19.0
- inference_library :
- pymc
- inference_library_version :
- 5.17.0
- sampling_time :
- 0.9197731018066406
- tuning_steps :
- 1000